

NEET 2023

VIDEO SOLUTION

The radist of inner most orbit of hydrogen atom is $\sqrt{\sim}$ 5.3×10^{-11} m. What is the radius of third allowed $\frac{5.3 \times 10^{-10}}{5.3 \times 10^{-10}}$ m orbit of hydrogen atom?

$$V = 0.53 (\frac{n^2}{2}) \text{ Å}$$

$$= 0.53 \times 9 \text{ Å}$$

$$(3) 0.53 \text{ A}$$

$$(4) 1.06 \overset{0}{A}$$

Calculate the maximum acceleration of a moving car so that a body lying on the floor of the car remains stationary. The coefficient of static friction between the body and the floor is 0.15 (g = 10 ms^{-2}).

$$(1)$$
 1.5 ms⁻²

(2)
$$50 \text{ ms}^{-2}$$

(3)
$$1.2 \text{ ms}^{-2}$$

$$(4) 150 \text{ ms}^{-2}$$

$$M g = g x. a$$

$$a = M. g$$

$$= 0.15 \times 10$$

$$= 1.5 \text{ m/s}^2$$

A satellite is orbitting just above the surface of the $\frac{1}{1} = \frac{2\pi R}{\sqrt{2}} = \frac{1}{2}$ earth with period T. If d is the density of the earth and G is the universal cosntant of gravitation, the quantity $T = \frac{2\pi R}{R} R^{\prime L}$

$$\frac{d}{y} = \frac{2\pi R R''}{2\pi R R''}$$

$$\frac{3\pi}{Gd}$$
 represents:

$$(1)$$
 T_3

$$(2) \quad \sqrt{T} \quad T^2 = \frac{4\pi^2 R^3}{4\pi^2 R^3}$$

The net impedance of circuit (as shown in figure) will

= 218L =2750x50, be: 100 x18 x10-6 220 V, 50 Hz $5\sqrt{5} \Omega$ **(2)** 25Ω

(3)
$$10\sqrt{2} \Omega$$

 15Ω (4)

10 resistors, each of resistance R are connected in series to a battery of emF E and negligible internal resistance. Then those are connected in parallel to the same battery, the current is increased n times. The value of n is

- (1) 1
- (2) 1000
- (3) 10
- (4) 100

A horizontal bridge is built across a river. A student on the bridge throws a small ball vertically upwards with a velocity 4 ms⁻¹. The ball strikes the water surface water after 4s. The height of bridge above $S = ut + \frac{1}{2}at^2$ water surface is (Take $g = 10 \text{ ms}^{-2}$):

In the figure shown here, what is the equivalent focal

length of the combination of lenses (Assume that all

layers are thin)?

rs are thin)?
$$n_1 = 1.5$$
 $R_1 = R_2 = 20 \text{ cm}$
 $R_2 = 1.6$

$$\frac{1}{f} = \frac{3}{100} + \frac{15}{100} - \frac{3}{10}$$

$$\frac{1}{f} = \frac{1}{100}$$

$$(1)$$
 -100 cm

$$(2)$$
 -50 cm

$$(4)$$
 -40 cm

A wire carrying a current 1 along the positive x-axis has length L. It is kept in magnetic field $f = I(L \times B)$ $\vec{B} = (2\hat{i} + 3\hat{j} - 4\hat{k})T$. The magnitude of the magnetic $\vec{I}(L \times B)$

force acting on the wire is:

$$(1)$$
 5 1L

$$(2) \sqrt{3} 1L$$

(4)
$$\sqrt{5}$$
 1L

The x-t graph of a particle performing simple harmonic motion is shown in the figure. The acceleration of the particle at t = 2 s is :

(1)
$$\frac{\pi^2}{16} \text{ms}^{-2}$$

(3)
$$\frac{\pi^2}{8} \text{ms}^{-2}$$

(2)
$$-\frac{\pi^2}{16} \,\mathrm{ms}^{-2}$$

(4)
$$-\frac{\pi^2}{8} \text{ms}^{-2}$$

A bullet from a gun is fired on a rectangular wooden block with velocity u. When bullet travels 24 cm through the block along its length horizontally,

velocity of bullet becomes $\frac{u}{3}$. Then it further $\left(\frac{u}{3}\right)^2 = \frac{u^2 + 2(-a)}{4}$ penetrates into the block in the same direction before

coming to rest exactly at the other end of the block.

The total length of the block is:

$$(2)$$
 30 cm

$$(3)$$
 27 cm

$$(4)$$
 24 cm

ck is:
(2) 30 cm
$$\frac{S}{\chi} = \frac{8/q^{0/2}}{\sqrt{2}/q}$$
(4) 24 cm
$$\frac{S}{\chi} = \frac{8}{2}$$

$$V=u^2+2aS$$